blob: ef20a30b3a8a97c4ed84af8ce508a423aef306f0 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
;;;; easing.lisp
(in-package #:animise)
;;; Utilities for defining easing functions
(defun time-frac (start duration current)
(let* ((end (+ start duration))
(progress (max 0 (- end current))))
(- 1.0 (/ progress duration))))
(defmacro def-ease (name &rest body)
`(defun ,name (start duration current &optional (delta 1))
(let ((frac (time-frac start duration current)))
,@body)))
(defmacro def-mirror-for (name-of-ease)
(let ((mirror-name (read-from-string (format nil "mirror-~a" name-of-ease))))
`(def-ease ,mirror-name
(if (<= frac 0.5)
(,name-of-ease start (* 0.5 duration) current delta)
(,name-of-ease start (* 0.5 duration)
(- (+ start (* 0.5 duration))
(- current (+ start (* 0.5 duration))))
delta)))))
;;; EASING FUNCTION DEFINITIONS ;;;
;;; The DEF-EASE macro defines a function. the BODY of the function has the
;;; following variables available to it:
;;; START the start time in MS
;;; DURATION intended duration of this animation
;;; CURRENT the current time, sometime after START
;;; DELTA, a number, the total change in the value being animated (e.g. X coordinate)
;;; FRAC, a number between 0 and 1, the how close to completion this animation is.
(def-ease linear (* delta frac))
(def-mirror-for linear)
(def-ease quad-in (* frac frac delta))
(def-mirror-for quad-in)
(def-ease quad-out (* frac (- frac 2.0) -1 delta))
(def-mirror-for quad-out)
(def-ease quad-in-out
(setf frac (/ frac 0.5))
(if (< frac 1) (* frac frac 0.5 delta)
(progn (decf frac)
(* -1 delta 0.5 (1- (* frac (- frac 2)))))))
(def-mirror-for quad-in-out)
(def-ease cubic-in (* frac frac frac delta))
(def-mirror-for cubic-in)
(def-ease cubic-out
(decf frac)
(* (1+ (* frac frac frac)) delta))
(def-mirror-for cubic-out)
(def-ease cubic-in-out
(setf frac (/ frac 0.5))
(if (< frac 1) (* delta 0.5 frac frac frac)
(progn
(decf frac 2)
(* delta 0.5 (+ 2 (* frac frac frac))))))
(def-mirror-for cubic-in-out)
(def-ease sinusoidal-in
(+ delta (* -1 delta (cos (* frac pi 0.5)))))
(def-mirror-for sinusoidal-in)
(def-ease sinusoidal-out
(* delta (sin (* frac pi 0.5))))
(def-mirror-for sinusoidal-out)
(def-ease sinusoidal-in-out
(* delta -0.5 (1- (cos (* pi frac)))))
(def-mirror-for sinusoidal-in-out)
(def-ease elastic-out
(let ((sqrd (* frac frac))
(cubed (* frac frac frac)))
(* 100 delta (+ (* 0.33 sqrd cubed)
(* -1.06 sqrd sqrd)
(* 1.26 cubed)
(* -0.67 sqrd)
(* 0.15 frac)))))
(def-mirror-for elastic-out)
(def-ease bounce-out
(let ((coeff 7.5627)
(step (/ 1 2.75)))
(cond ((< frac step)
(* delta coeff frac frac))
((< frac (* 2 step))
(decf frac (* 1.5 step))
(* delta
(+ 0.75
(* coeff frac frac))))
((< frac ( * 2.5 step))
(decf frac (* 2.25 step))
(* delta
(+ 0.9375
(* coeff frac frac))))
(t
(decf frac (* 2.65 step))
(* delta
(+ 0.984375
(* coeff frac frac)))))))
(def-mirror-for bounce-out)
;;; Some functions to check your intuitions about the output of easing functions
(defun make-frames (ease-fn &optional (step 0.1))
(loop :for time :from 0 :upto (+ 1 step) :by step
:collect (funcall ease-fn 0 1.0 time)))
(defun print-frames (fn &key (width 20) (mark #\.) (step 0.1))
(loop for frame in (make-frames fn step) do
(dotimes (x width) (princ #\Space))
(dotimes (x (round (* frame width)))
(princ #\Space))
(princ mark)
(terpri)))
|